
or

ii

Copyright c©year by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate percopy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 7508400,

fax (978) 6468600, or on the web at www.copyright.com. Requests to the Publisher for permission should

be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 7486011, fax (201) 7486008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales

representatives or written sales materials. The advice and strategies contained herin may not be

suitable for your situation. You should consult with a professional where appropriate. Neither the

publisher nor author shall be liable for any loss of profit or any other commercial damages, including

but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care

Department with the U.S. at 8777622974, outside the U.S. at 3175723993 or fax 3175724002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress CataloginginPublication Data:

Title, etc

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

1 The Future in Mobile Multicore Computing 1

Blake Hurd, Chiu C. Tan, and Jie Wu

1.1 Introduction 1

1.2 Background 3

1.2.1 GPGPU Implementation 3

1.2.2 Intelligent Power Scaling Implementation 4

1.2.3 MultiTasking Implementation 4

1.3 Hardware Initiatives 5

1.3.1 Chipset Support 5

1.3.2 Impact 7

1.4 Software Initiatives 7

1.4.1 Language Support 8

1.4.2 Impact 8

1.5 Additional Discussion 9

1.5.1 Companyspecific Initiatives 9

1.5.2 Embedded Computing Research Initiatives 10

1.6 Future Trends 10

v

vi CONTENTS

1.7 Conclusion 11

References 11

CHAPTER 1

THE FUTURE IN MOBILE MULTICORE

COMPUTING

Blake Hurd, Chiu C. Tan, and Jie Wu

Temple University, Philadelphia, Pennsylvania

1.1 INTRODUCTION

Mobile computers are with us everywhere, allowing us to work and entertain ourselves

at any venue. Due to this, mobile computers are replacing desktops as our personal

computers. Already, we see signs of smartphones becomming more popular than

traditional desktop computers [1]. A recent survey of users reveals that email, Internet

access, and a digital camera are the three most desirable features in a mobile phone,

and the consumers wanted these features to be as fast as possible [2]. The increasing

sales of more powerful phones also indicate consumer demand for more powerful

phones [1, 3].

There are two ways to improve mobile computing. The first way is to execute the

computation remotely, where the mobile phone transfers the processing to a remote

platform, such as a cloud computing environment, to perform the computation and

title, edition. By author

Copyright c© 2012 John Wiley & Sons, Inc.

1

2 THE FUTURE IN MOBILE MULTICORE COMPUTING

Figure 1.1 Remote computation requires greater security, energy, and latency consideration

than local computation.

then retrieves the output. The alternative is for the mobile device to execute the

computation locally using its own hardware. The following three factors make

remote computation less ideal than local computation.

1. Security. Remote computation requires outsourcing data to a third party, which

increases the security risks since the third party may not be trustworthy. For

instance, the third party may utilize the data to violate the user’s privacy. Local

computation, on the other hand, does not have this problem.

2. Efficiency. Transmitting data to a remote server may incur a higher energy

cost [4] due to the large communication overhead of the wireless transmission.

Furthermore, remote computation requires utilizing more bandwidth, which

can be more expensive in environments where bandwidth is metered. Local

computation can avoid the high bandwidth charges, and, as we will show in

subsequent sections, may be more power efficient.

3. Timeliness. It is difficult to guarantee timeliness when using remote compu

tation due to the unpredictability of wireless communications under different

environmental conditions, such as traveling on a subway. Local computation

is not affected by this issue.

In this paper, we are concerned with scenarios where local computation is better

than remote computation. Local computation has its own set of challenges, specif

ically to increase its energy efficiency while improving its timeliness. The two

requirements are somewhat contradictory since reducing the processor speed is a

important component of improving the energy efficiency; however this, will result in

a longer computation time and will decrease timeliness. This is the case in a single

core architecture. In this paper, we will show that multicore architectures do not have

this limitation.

BACKGROUND 3

1.2 BACKGROUND

The adoption of general purpose GPUs (GPGPUs) and multicore CPUs into mobile

devices allows these devices to perform powerful local computations. GPGPUs

allow parallelized programs to run on the GPU. These programs run on both the

CPU and GPU as needed, and this level of hardware flexibility allows software to

present a better user experience. We define Mobile Multicore Computing (MMC) as

a mobile computer computing with a GPGPU and/or multicore CPU. MMC is quickly

becoming a reality: tablets are available, and smartphones will be available during

the first quarter 2011. Projections suggest that by 2013, most mobile platforms, 88%,

will have MMC architecture [5].

We explore three technical issues related to MMC: implementation of GPGPUs,

intelligent power scaling, and multitasking applications. There are more issues,

but we expect these three to be the most important currently and in the future. For

each issue, we will examine its importance to MMC as well as the challenges. We

divide our discussion into hardware and software components. We analyze why each

is difficult to solve and why each is beneficial. We discuss hardware and software

support and the impact of this support on these issues.

GPGPU, power scaling, and multitasking, enabled by MMC hardware and soft

ware support, will allow for increased performance and increased energy efficiency

to be possible. For example, there are advantages in using a multicore CPU. Single

core CPUs increase performance linearly at the expense of an exponential increase

in power; multicore CPUs can increase performance linearly for a linear increase

in power. In other words, if we get similar throughput from two 400mhz cores

versus one 800mhz core, we save power by using the two 400mhz cores. Nvidia

tests this concept and demonstrates a 40% power improvement to achieve the same

performance benchmark on their latest mobile chipset [6].

1.2.1 GPGPU Implementation

GPGPU uses the GPU’s synchronized group of cores to process small, parallelized,

nongraphic tasks in parallel to run certain tasks faster and more efficiently than

CPUs. GPGPU processing is suitable for tasks that can be split into parallel data,

such as matrices or arrays of data where each sector needs the same instruction

executed. These highly parallel tasks are best run on the GPGPU instead of the

CPU. For example, video encoding and decoding is more efficient when run via the

GPGPU.

The GPGPU cannot be widely implemented until an agreed standard between

hardware and software is achieved. Each chipset needs to incorporate a GPGPU that

supports a language for sending tasks to the GPU and retrieving results. The language

supported must be a determined standard; otherwise, programs must be redeveloped

based on what device the programs are running on.

Mobile computers have to calculate a multitude of massively parallel problems

like video processing, wireless baseband processing, Fast Fourier Transform (FFT),

4 THE FUTURE IN MOBILE MULTICORE COMPUTING

and packet routing. If these calculations are run via the GPGPU rather than the CPU,

the performance gained and power efficiency is highly beneficial.

1.2.2 Intelligent Power Scaling Implementation

All current chipsets allow Dynamic Voltage Frequency Scaling (DVFS) and static

power domains. This allows complex, robust implementations for intelligently scal

ing chipset power consumption. Static power domains allow the CPU to move

between frequency boundaries, and DVFS allows dynamic voltage and CPU fre

quency tweaking. A sufficiently intelligent power scaling implementation wields

these features optimally.

When all applications are running on one core, finding the optimal frequency is

simple, and thus a power scaling implementation is simple. However, in a multicore

environment, cores manage different workloads, and some environments require each

core to run at the same frequency. Overall, this problem, optimal power management

for DVFSenabled multicore processing, is proven to be NPhard [7].

If each processor core runs at a frequency that meets the user’s requirements and

no faster, then the mobile device may conserve power. The benefits are substantial:

with hundreds of millions of smartphones (there are supposedly 170 million [8] sold

every year), improving phone power consumption efficiency by 5% will save the

amount of energy equivalent of 8.5 million smartphones.

1.2.3 MultiTasking Implementation

Multitasking refers to running as many tasks at the same time as possible. The goal is

to give the user the perception of complete parallelization that one can run as many

applications as one wants to without any limitations. Multitasking is essentially

multithreading; each application is separated into threads, or tasks, and then each

thread/task is scheduled in proper balance to multitask.

The difficulty is developing an intelligent scheduler that balances as many pro

cesses/threads as possible while providing a satisfactory experience. Mobile multi

tasking is more challenging due to limited memory and power. Limited memory

requires applications to be small. In addition, code reuse is also necessary if multiple

applications are kept in memory at the same time. If the foreground application

needs memory that other applications are using, it will slow down and more power

is spent. Background applications also drain the battery when the ongoing workload

causes a measurable task switching overhead. Users may launch applications without

ending any running applications and inadvertently drain the limited power. Finally,

because most mobile phones use ARMdesigned CPUs, the scheduler must consider

the design’s slower task/process switching.

If multithreading is enabled, the OS may redesign their scheduler to share inde

pendent threads across multiple cores once available. Non multitasking OSs only

maintain the thread(s) allocated to the application inuse with the thread(s) used by

the OS itself. Such OSs can only schedule the OS thread(s) on a different core, and

there would be trouble with scheduling the thread(s) allocated to the application in

HARDWARE INITIATIVES 5

Table 1.1 Current Smartphone Architectures

Phone CPU GPU GPGPU Power

Scaling

Multi

tasking

Apple iPhone

3G

ARM11

MPCore

PowerVR

MBX Lite

No Yes No

Apple iPhone

3GS

ARM

CortexA8

PowerVR

SGX535

No Yes Partial

Apple iPhone 4 ARM

CortexA8

PowerVR

SGX535

No Yes Partial

HTC Nexus

One

Qualcomm

Scorpion

Qualcomm

Adreno 200

No Yes Partial

HPPalm Pre ARM

CortexA8

PowerVR

SGX530

No Yes Partial

HPPalm Pixi ARM11

MPCore

Qualcomm

Adreno 200

No Yes Partial

HPPalm Pre 2 ARM

CortexA8

PowerVR

SGX530

No Yes Partial

HTC Evo 4G Qualcomm

Scorpion

Qualcomm

Adreno 200

No Yes Partial

Microsoft Kin

One & Two

ARM11

MPCore

Nvidia

ULP

GeForce

No Yes Partial

Motorola Droid ARM

CortexA8

PowerVR

SGX530

No Yes Partial

Samsung

Galaxy S

ARM

CortexA8

PowerVR

SGX540

No Yes Partial

use; the application may require an order to commence thread execution and may

lock up the cores, or the application may have a single thread.

1.3 HARDWARE INITIATIVES

Hardware initiatives create a new hardware architecture foundation for solving our

three technical issues. Chipsets are the main hardware initiative; a new chipset

allows software to utlize more capabilities and to present a stronger device. The

latest chipsets mostly rely on the latest ARM designs, which are licensed to most

companies releasing chipsets. The chipsets are created by combining a CPU, a GPU,

specialized processing units, and memory.

1.3.1 Chipset Support

We discuss the progress of multicore CPUs and the progress of GPGPUs; then, we

discuss the state of current and future generation smartphone architectures in utilizing

these MMC components.

6 THE FUTURE IN MOBILE MULTICORE COMPUTING

Table 1.2 Upcoming Chipsets

Chipset CPU GPU GPGPU Power

Scaling

Multi

Tasking

Apple A5 ARM CortexA9 PowerVR

SGX543MP2

Yes shared Yes

Qualcomm

Snapdragon

QSD8x50A

Qualcomm

Scorpion

Qualcomm

Adreno 205

No per

core

Partial

Qualcomm

Snapdragon

MSM8x60

Qualcomm

Scorpion

Qualcomm

Adreno 220

No per

core

Yes

Qualcomm

Snapdragon

QSD8x72

Qualcomm

Scorpion

Qualcomm

Adreno 220

No per

core

Yes

Nvidia Tegra 2

T20

ARM

CortexA9

Nvidia

ULP

GeForce

No shared Yes

Nvidia Tegra 2

AP20H

ARM

CortexA9

Nvidia

ULP

GeForce

No shared Yes

Nvidia Tegra 2

3D T25/AP25

ARM

CortexA9

Nvidia

ULP

GeForce

No shared Yes

TI OMAP4430 ARM

CortexA9

PowerVR

SGX540

No shared Yes

TI OMAP4440 ARM

CortexA9

PowerVR

SGX540

No shared Yes

Samsung Orion ARM

CortexA9

ARM Mali

400

No shared Yes

STEricsson

U8500

ARM

CortexA9

ARM Mali

400

No shared Yes

Most mobile CPUs are based on ARM’s design licenses. There are four relevant

generations of mobile ARM CPU designs: the ARM11 MPCore, the ARM Cortex

A8, the ARM CortexA9, and the ARM CortexA15. The ARM11 MPCore is the

oldest and the least energyefficient, but it is the cheapest to produce. The CortexA8

only allows single core. Otherwise, the other three generations allow multicore, up

to four cores, at improved energy efficiency and performance between generations.

Various mobile GPUs are available to pair with these CPUs. PowerVR’s SGX

series is the most popular, and a GPGPU was released that is available for the future

generation of smartphones. The early 2011 generation added dualcore CPUs, but

later 2011 models should include GPGPUs, starting with Apple’s newest smartphone.

Every CPU in the 2010 generation smartphone architectures is singlecore (see

Table 1.1). All current phones support DVFS for power scaling, and almost all current

phones have multicore sequels in development. There is a popular mobile GPU that

SOFTWARE INITIATIVES 7

introduces GPGPU support [9]; most future generation mobile phones should use

this GPU and thus implement GPGPU.

Multicore chipsets (see Table 1.2) were available in smartphones and other mobile

computers in early 2011, and multicore is common in future smartphone architecture.

The ARM CortexA9 CPU supports shared DVFS and four static power domains,

whereas the Qualcomm Scorpion CPU supports a percore DVFS. Shared DVFS

means that each core in the same power domain must run at the same frequency, and

each power domain provides an upper and lower bound for modifying the frequency.

In percore, each core can always run at a frequency independent of other cores.

Percore DVFS thus allows more flexible power scaling solutions.

1.3.2 Impact

As discussed in chipset support, all chipsets in the current generation do not imple

ment GPGPU. Chipsets in future generations will. Incorporating the GPGPU into the

chipset allows software initiatives to be designed to take advantage of the GPGPU.

Power scaling has hardware support in the previous generation but is more im

portant in this next generation. With two CPU cores to manage, either with shared

or percore DVFS, algorithms must handle more conditions, but the potential energy

efficiency achieved is more beneficial. The industry is counting on implementations

of intelligent power scaling algorithms to take advantage of parallelism to lower the

system’s power consumption.

Multitasking was limited in the previous generation. With one CPU core to run

on and no GPGPU support, multitasking was largely about swapping running tasks

fast enough to give the user the perception of multitasking. With two CPU cores

available for general purpose programming and with GPGPU support upcoming,

tasks can be distributed across the available hardware and can be executed at virtually

the same time. This requires additional research to better perform load balancing

of the various requirements. Load balanced multitasking is also related to power

scaling; if CPU cores are multitasking the workload at the best balance possible,

we can measure the minimum frequency needed to maintain that balance and set the

CPU to that frequency.

1.4 SOFTWARE INITIATIVES

Software initiatives use the foundation laid by the hardware initiatives to solve the

issues that MMC presents. Languages are the main software initiative, specifically

streaming languages. Streaming languages provide the software side of implementing

GPGPU on a mobile computer and also assist power scaling algorithms. Streaming

languages allow for better parallelization of each application. A higher degree of

parallization will allow power scaling algorithms to better balance the energy, and

thus lower the overall power consumption. The streaming languages may also support

load balancing algorithms for multitasking and balancing programs over CPUs and

the GPGPU.

8 THE FUTURE IN MOBILE MULTICORE COMPUTING

1.4.1 Language Support

Streaming languages allow finegrained parallelization to weave into serial program

ming. A set of data, called a stream, is presented with a list of operations, called

kernel functions, which are then applied to every element in the data stream. These

streams can illustrate a graph and allow the stream language compiler to parallelize

the program. The most popular languages are OpenCL and CUDA. OpenCL is the fu

ture standard, but CUDA remains available due to the limited hardware and software

support for OpenCL. In addition to these, we briefly discuss Brook and StreamIt,

which are popular in academia.

OpenCL is an opensource project that is supported by the mobile industry as the

future of parallel programming. AMD and Nvidia support OpenCL on their GPUs, so

OpenCL will be supported on most, if not all, GPUs in the future. OpenCL provides

a framework for managing CPUs and other processing units through a sublanguage

that is used beside higher level languages like C++ or Java. Serial programming

is still allowed by programming in C++ and Java without the bindings, and weaves

into parallel programming through OpenCL bindings. OpenCL will be available to

mobile chipsets before CUDA, as the first mobile GPGPU supports OpenCL [9].

GPGPU is possible if executing on an Nvidia GPU that supports CUDA. However,

the latest mobile Nvidia chipsets do not support CUDA, so a mobile GPGPU through

CUDA is currently not possible. Furthermore, CUDA only controls GPGPUs; CUDA

does not affect the programming framework of different types of processing units and

multicore CPU management. Nvidia continues to support CUDA, but also supports

OpenCL, releasing APIs for converting code from CUDA to the OpenCL framework.

Brook and StreamIt are two academic languages for parallel programming. Brook

is similar to OpenCL and CUDA, predating both languages. StreamIt, alternatively,

is unique and remains popular in research, presenting a highlevel language for

designing highly parallel programs. StreamIt depends on its own compiler, and its

syntax restricts its capacity for handling serial code. However, StreamIt remains

popular and papers continue to be published, as it is effective for creating highly

parallel programs.

1.4.2 Impact

GPGPUs need a streaming language, otherwise programs cannot communicate to it.

Every major GPU developer has chosen to support OpenCL, releasing an OpenCL

driver to support OpenCL on their GPU. Writing OpenCL then allows programs to

execute in parallel on the GPU, thus completing GPGPU implementation.

Power scaling may be addressed by software support. Application developers

can parallelize their programs by using the tools available to develop more power

efficient and scalable algorithms. Power scaling algorithms can also account for the

differences of a CPU execution versus a GPGPU execution.

Multitasking solutions can be created with the help of streaming languages.

Streaming languages allow programs to be designed as parallel as possible. These

parallel components can be run on the MMC hardware to multitask.

ADDITIONAL DISCUSSION 9

1.5 ADDITIONAL DISCUSSION

Now, we discuss new advances in industry and related academic research that are

relevant to MMC.

1.5.1 Companyspecific Initiatives

There are many different initiatives geared towards MMC among companies, and

some are collaborative projects between them. We mention leading companies in the

mobile marketplace and how they approach the technical issues of MMC.

• Google. Google’s Android platform does not support GPGPUs yet and has

not taken direct steps to improve power scaling. However, Google licensed

the WebM codec, also known as the VP8 codec, which is designed as a

complex encoding process with a simple, lowpower decoding process. Both

the encoder and decoder algorithms are parallelizable for MMC. When fully

implemented, the codec may provide a multimedia experience that is more

power efficient than current methods. Google’s Android platform continues to

develop its scheduler algorithm to multitask better. When multicore becomes

the standard, multitasking will be further pursued on the platform.

• Texas Instruments. Texas Instruments also does not support GPGPUs yet.

Texas Instruments’ latest platform supports power scaling like other platforms,

but requires more intelligent algorithms due to multicore availability. Texas

Instruments is also supporting SMP (Symmetric Multi Processing) on their

latest platform; SMP means that each processor core shares memory and can

run any task presented by the OS, given that the task is not being run on another

core, allowing for multitasking.

• STEricsson/ARM/Google. STEricsson does not support GPGPUs. However,

STEricsson and ARM are working on a joint development on the Android OS

to take advantage of SMP when executing their latest platform, which contains

a multicore CPU. Like Texas Instruments’ SMP support, this can lead to power

scaling and multitasking improvements.

• Apple. Apple is prioritizing support for GPGPUs; their OS introduced support

for GPGPU [9]. Their latest smartphone will contain a dualcore OpenCL

enabled GPGPU [10], and better power scaling and multitasking efforts may

be attainable.

• Microsoft. Microsoft does not discuss implementing GPGPUs or power scaling

on its mobile platform. However, on multitasking, Microsoft’s Barrelfish

research project considers a distributed multikernel OS where each application

is assigned to a set of cores, is completely independent of other applications,

and can asynchronously communicate with other applications.

• Nokia. Nokia contributes to OpenCL and further develops GPGPU implemen

tations. Nokia’s Research Center also works on power scaling under the Nokia

10 THE FUTURE IN MOBILE MULTICORE COMPUTING

Research High Performance Mobile Platforms Project, but no publications in

this topic have been released yet. Nokia has not announced any initiatives

towards improving multitasking on mobile computers.

• HPPalm. HPPalm does not discuss GPGPU for Pre/WebOS. An implemen

tation of intelligent power scaling was added via patching WebOS. WebOS

partially supports multitasking, but it does not run on nonMMC hardware;

applications run in parallel from the user’s perspective, but the OS schedules

intelligently on a single core. With new funding from HP, the Pre/WebOS may

improve solutions to all three issues.

1.5.2 Embedded Computing Research Initiatives

Embedded computing research is tied to MMC, as mobile computers and smartphones

are a subset of embedded computing.

There is research on using GPGPUs on mobile/embedded computers, but presently

most GPGPU research is about running applications on desktops where the appli

cations are potentially useful in a mobile environment, such as wireless processing,

packet routing, and network coding.

In recent years, research focused on developing an intelligent power scaling

scheduling algorithm that load balances and unbalances intelligently, maintaining

the same performance while saving power via controlled usage of DVFS. There are

many contributions in this area [11, 12, 13, 14], and we expect that more will follow,

as scheduling for optimal power management on multicore is an NPhard problem [7].

Some papers propose strategies that are alternative approaches and do not compare

to previous strategies. We expect that combinations of these methods will be a future

research topic, as a more robust implementation, capable of handling more workload

scenarios optimally, may be possible. These scheduling algorithms must create even

load balancing to save power; thus, such algorithms also contribute to the topic of

improving multitasking.

1.6 FUTURE TRENDS

As MMC research progresses, there are several trends we observe.

Trend 1. Software driven energy efficiency. More advanced software solutions

will be designed given the upcoming influx of MMC hardware that makes MMC

possible. Current software solutions must be redeveloped to balance the energy

efficiency and the performance while taking advantage of multiple cores; balancing

GPGPU execution versus CPU execution.

Trend 2. Adding cores. Hardware development will add cores for both CPUs

and GPUs. For CPUs, dualcore is available, and quadcore is not far behind. The

first mobile GPGPU supports 2 to 16 GPU cores, allowing future generations to scale

as necessary. Adding cores adds valuable granularity and flexibility for improved

energy efficiency and improved performance. Research is unclear on when adding

CONCLUSION 11

Figure 1.2 Future Trend I: Software in MMC will push energy efficiency; the energy vs.

performance trade off.

cores will no longer offer any advantages in a mobile environment; that will be more

important in the future.

Trend 3. GPGPU implementation and its future in MMC. GPGPUs will be

implemented on every mobile computer with a GPU, and we expect GPGPUs to be

widespread within the next few years. All MMC smartphones are slated to release in

the first half of 2011 with a nonGP GPU. However, the latest of these GPUs in their

respective families have GPGPU support through OpenCL support. When GPGPUs

are fully implemented, increasingly many algorithms will adopt OpenCL, allowing

for easy parallelization across CPUs and GPUs. We expect the implications of using

a GPGPU on a mobile device to be a burgeoning topic of research.

1.7 CONCLUSION

In conclusion, we observed the progress of mobile computing, its trend toward

MMC, and three important technical issues: GPGPUs are not yet being implemented,

intelligent power scaling algorithms are needed, and multitasking algorithms are

needed. We discussed hardware and software support for solutions to these issues.

We additionally discussed some leading companies in the mobile marketplace, and

their solutions, and different research initiatives to these issues. We discussed the

field of embedded computing research, its relation to MMC, and its contributions

toward these issues, specifically its contributions to an intelligent power scaling

algorithm. Discussing these issues and initiatives reveal three future trends of the

MMC industry that we discussed briefly: software will be developed to use the

hardware more effectively to provide more energy efficiency; hardware will to add

more cores, allowing for more flexibility and granularity to software solutions for

improved energy efficiency; GPGPUs will take the forefront as a valuable tool for

improving both energy efficiency and performance for solutions to many types of

problems in mobile computing.

REFERENCES

1. D. McGrath, “IDC: Smartphones out shipped PCs in Q4,” in EE Times, 2011.

2. O. R. C. News, “Consumers want smarter, faster phones.” 2010.

12 THE FUTURE IN MOBILE MULTICORE COMPUTING

3. E. Woyke, “The Most Powerful Smart Phones,” in Forbes.com, 2009.

4. J. Baliga, R. Ayre, K. Hinton, and R. Tucker, “Green cloud computing: Balancing energy

in processing, storage, and transport,” 2011.

5. Softpedia, “Instat research predicts multicore cpus in 88% of mobile platforms by 2013.”

2009.

6. NVIDIA, “The benefits of multiple cpu cores in mobile devices.” 2010.

7. C.Y. Yang, J.J. Chen, and T.W. Kuo, “An approximation algorithm for energyefficient

scheduling on a chip multiprocessor,” in IEEE Design, Automation and Test in Europe

(DATE), 2005.

8. Gartner, “Gartner Says Worldwide Mobile Phone Sales to End Users Grew 8 Per Cent in

Fourth Quarter 2009; Market Remained Flat in 2009.” 2010.

9. ImaginationTechnologies, “Imagination Technologies Extends Graphics IP Core Family

with POWERVR SGX543.” 2009.

10. AppleINsider.com, “Apple to pack ultrafast, dual core SGX543 graphics into iPad 2,

iPhone 5.” 2011.

11. X. Huang, K. Li, and R. Li, “A energy efficient scheduling base on dynamic voltage and

frequency scaling for multicore embedded realtime system,” in International Conference

on Algorithms and Architectures for Parallel Processing (ICA3PP), 2009.

12. X. Wu, Y. Lin, J.J. Han, and J.L. Gaudiot, “Energyefficient scheduling of realtime

periodic tasks in multicore systems,” in IFIP international conference on Network and

parallel computing (NPS), 2010.

13. D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “A simple poweraware

scheduling for multicore systems when running realtime applications,” in IEEE Interna

tional Parallel and Distributed Processing Symposium, 2008.

14. E. Seo, J. Jeong, S. Park, and J. Lee, “Energy efficient scheduling of realtime tasks on

multicore processors,” in IEEE Transactions of Parallel Distributed Systems, 2008.

